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FOREWORD

This report was prepared by Dr. Robert H. Korkegi and

Maj Ronald A. Briggs of the Hypersonic Research Laboratory, Aerospace

Research Laboratories, Office of Aerospace Research, United States Air

Force. The investigation was carried out under Project 7064 entitled "High

Velocity Fluid Mechanics."
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ABSTRACT

Equations describing compressible turbulent plane Couette flow for

the case of equal heat transfer at both walls have been developed for a

perfect gas based on the von Karman mixing length model. This model was

selectedbecause of its good agreement with available turbulent plane

Couette flow measurements of incompressible flow and furthermore, lacking

compressible Couette flow data, it is shown by Spalding and Chi that those

theories based on the von Karman model give best agreement with

compressible turbulent boundary layer measurements.

A sample calculation is given for the heat rate to the inner surface of

a rail-guided slipper (representative of slippers supporting rocket boosted

sleds) based on the assumption of a small air gap between both surfaces.
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NOMENCLATURE

b half-gap height

Cf local skin friction coefficient

Ch local heat transfer coefficient
S constant empirically determined

h enthilpy

kE eddy conductivity

I mixing length

m Eqn. 8

M Mach number

M c  Eqn. 8

-p pressure

Pr Prandtl number

q rate of heat transfer

R gas constant

Re Reynolds number

T temperature

u velocity

U U/uc

uT shear velocity

u+ nondimensional velocity

y distance from lower wall

y+ nondimensional distance

-K mixing length,. constant

vi



eddy viscosity

7 shear stress

Subscripts

b half-gap

c properties at midpoint of gap

d gap width

r upper wall

t turbulent

w lower wall

E eddy

C free stream
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INTRODUCTION

Turbulent plane-Couette-like flow has been observed experimentally

1 2by Reichardt and Rabertson in apparatus utilizing endless moving belts.
3

Both authors, as well as Squire , present theoretical treatments for the

incompressible case.

Based on experimental evidence (cf. Refs. 2 and 4), turbulent plane
3

Couette flow can be expected to occur at Red _- 0 (10 ) where d denotes gap

height. In the data of Couette, presented by Robertson , laminar flow was

observed for Red -_ 400 and turbulent flow for Red ? 10 between concentric

cylinders with a spacing of 1.7% of the cylinder radius.

Interest in compressible turbulent plane Couette flow is stimulated

by such problems as the rail-guided slippers supporting rocket-boosted

sleds accelerated to speeds of several 1000 f. p. s. at the Test Track

Directorate of AFMDC, Holloman AFB. Fully developed shear flows can be

expected in the air gap between slipper and rail surfaces, and the Reynolds

numbers based on gap height are large enough for turbulent flow to prevail.

TURBULENT FLOW MODEL

For lack of experimental data on compressible turbulent plane

Couette flow, the turbulent law selected is chosen as that which gives best

agreement with turbulent boundary layer data at supersonic speeds,

compatible with good agreement with the low speed skin friction and velocity
2

profiles for turbulent Couette flow measured by Robertson . The data of

Robertson were used because of the large number of measurements

presented and their good agreement with the earlier work of Couette.

According to the excellent survey of theories for turbulent boundary

layer flow of Spalding and Chi , those based on mixing length give best

agreement with experiment for both the adiabatic and nonadiabatic wall case.'It 7
Two of the three theories giving best agreement are those of Wilson and

8
Van Driest ,both based on the von Karman mixing length.



On the strength of these findings coupled with the good agreement

with Robertson' s data, the von Karman mixing length is selected as

turbulent flow model.

GOVERNING EQUATIONS

For Couette flow the equations of motion reduce to

Momentum T = const= Tw (1)

Energy q- T U const =qw (2)

Where T and q are taken to denote the sum of laminar and turbulent

shear and heat transfer respectively, the subscript w denotes values at the

lower wall, and u denotes the time average value of the velocity. A sketch

of the flow is shown in Fig. 1.

'Note that T = const is a simplifying approximation in most turbulent

boundary layer theories, whereas it is exact for Couette flow.

In the compressible analysis, only the symmetrical case of equal

wall temperatures and heat rates will be considered, which implies the

velocity profile will be antisymmetric about the midpoint of flow. Thus,

following Fig. 1 and utilizing Eqns. 1 .and 2

4r w T w uc (3)

where uc = Y/ ur is the midpoint velocity, the subscript r denoting values at

'the upper wall.

Neglecting the laminar contribution to shear and utilizing the

von Karman mixing length

du

' ; 1 = -K

d7

9
where K is a mixing length constant whose value is taken as 0.4 , one

obtains the differential equation

du+ if 9 /du+ 0
dy + + P dy+ -0(4)



where y+ and u+ are nondimensional height and velocity defined as follows

y+ uTy C RebVw  Vb

(4a)
U+ = TuC

U T GfUc

uT  = w is the shear velocity, and Reynolds number and skin

friction coefficients are based on midpoint values, b and uc -- see Fig. 1 --

and wall viscosity, and defined as follows

ucb Cf T w IuT\z
Reb = ' 2 PwU \uc

With the boundary condition u+ (y+ = 0) = 0, the general solution of

Eqn. 4 yielding the velocity profile between the fixed wall and.the midpoint

of the flow is

y+ = C exp K du+ (5)
"Jo 0 ;P

If one applies a second boundary condition of (du/dy)y = 0 = Tw/Aw

at the wall, e.g.,

du+ I =1
dy+ y 0

one obtains a constant of integration

C= 1. (5a)

However, as the flow near the wall is dominated by laminar motion, one

cannot rigorously apply a boundary condition based upona turbulent shear

flow model. Therefore, in accordance with standard turbulent boundary

L i layer-notation (cf. 'Spalding and Chi),

3



is used where the value E is determined empirically. E/K may be viewed as

a scale or stretching factor on the coordinate y. Thus,

E +  u+ U+_K. ~ ~ Uexp 2K(5 d~j du+(6
0 0 J

The density ratio pl/w for the compressible case is related to the

velocity distribution by means of the energy equation, Eqn. 2. Introducing

an eddy viscosity 11 , eddy conductivity k, , and turbulent Prandtl number

PrE = C p4E/ kE , the turbulent shear and heat rateare written respectively

du kE dP Ck dh
Tt= PE d and qt cp dy PrE dy

Neglecting the laminar contribution, from Eqn. 1, Tw = PIE (du/dy) = const

hence q = qt = (rw/PrE) (dh/du), and therefore Eqn. 2 is written

Tw dh
PrC du+ T w u = -q wPrE du W

Assuming Pr E = 1,. andintroducing Eqn. 3 for the case of equal

heat transfer, its solution is

-UL-

h hw + uc u- (,

A Mach number, Mc , based on midpoint velocity and wall enthalpy is

defined
m z  -Y M 7 U P u z

M = - - (8)

2 c 2hw

Equation 7 can thus be written

_= 1+ m2 (ZiI- if)
: ~ ~bw (a

(7a)

where U= -
uc

4



Now, limiting the analyeis to the case of a perfect gas -- p

p R T -- , and noting that the preIssure is constant throughout the Couette

flow

T w  hw -1
pw 1 + mz -U I+- UZ) (9)

PW T h

INCOMPRESSIBLE CASE

For p = pw = const, the solution of Eqn. 6 is

-l + 1Cf (10)

and the skin friction law (u= uc for y b)

'- 1~ In(T4E ' Reb) (1
Vf .

Best fit with the experimental data of Robertson is obtained for

E -8. 8 (Note that E varies from about 11 to 13+ in various turbulent

boundary layer theories based on mixing length, cf. -Ref. 6), and further-

more, since turbulent C6uette flow has been observed only for Reb 10

for which (E[f7T RebY > 200, Eqn. 11 can be approximated as

2.5 In 18. R
SCf Reb

(1 2)

or -- -= 5.44 + 2. 5 In -/C Reb)
VCf - _V

This equation is plotted in Fig. 2 and gives very good agreement
z

with Robertson' s measured values as well as those of Couette given in the

same reference over the whole range of Reb. Also shown in Fig. 2 is the

laminar law Cf Ret = 2. -Note that Eqn. 12 is almost identical-to the skin

5



friction law given by Robertson based on Reichardt' s solution for the

velocity distribution assuming a parabolic variation of eddy viscosity

5. 5 + 5. 75 log- (Rcb Cf

Velocity profiles from Eqn. 10 with r = 0. 4 and E 8. 8, are given
in Fig. 3 for Reb = 10, 104 , and 105 and compared with Robertson' s

4
measurements for Reb = 10

DEDUCTIONS FROM THE INCOMPRESSIBLE LAW

If the velocity profile very close to the wall is examined, the log

termin Eqn. 10 can be expanded for

E ---V Reb)b

- I In."-.E -J
I-y ebb +O[(W Ybb

yieing 35 E T R bb ecL

u E Cf
or u 2 Reb' (13)

which has the desired linear laminar character and precisely the laminar

,formfor ElK = 1 except that the velocity profile has a much steeper slope

as [ (Cf/Z) Reb]turb > 1> compared with [ (Cf/2) Reb]lam = 1.

It is thus found that the von Karman mixing lengthmodel, which

depends only on the local flow characteristics, gives the features of a

laminar sublayer when applied near a wall.

Also, taking the slope of the velocity-profile from Eqn. 10

U 'N E C
d_____ 2 Reb

b I + E "-RebY-
6b



K At the wall

!uL ddk Tc E Cf

K 2 Reb,
y= 0

as from Eqn. 13 and at the midpoint y = b

/U ]E Cf
d/u) K Z Reb 1 [Cf

d Y ;f K 2
Y= b l+ T Reb

It is also interesting to note the form of the eddy viscosity for the

incompressible case obtained from the slope expressed above and rewritten

as follows

Tw= Pw (VW + KuT dud(E -)
1 \K/

Here again appears the laminar form and the constant ELK as a scale or

stretching factor. Note that the form of the eddy kinematic viscosity from

von Karman' s ,mixing length-model is linear for incompressible Couette

flow

VT = KUTY

As a matter of interest, the ratio of turbulent to laminar viscosity is

turbulent viscosity- E UT Y E e

laminar viscosity Vw 2 b b

Thus, the approximation made in Eqn. 12 corresponds to neglecting

the laminar contribution to the shear.

The form of the eddy viscosity is actually not too important -- what

is important is the scale. Thus, if a parabolic eddy viscosity distribution

is taken,. rather than a linear v?.:iation, i. e. = KU y(l- u/2b)

7



(followin~g Reichardt), the skin friction becomes

2 22 +
0 = K E Re b  In '(1 + E Reb)

which differs from Eqn. 1-1 only by a second order term.

COMPRESSIBLE CASE

In a manner analogous with turbulent boundary layer development,

it is assumed that the incompressible scale factor holds for the compress-

ible .case, i.e. E'= 8.8.

Introducing Eqn. 9 for the density ratio into Eqn. 6, one obtains

4+ -T u+E y + exp K [1+ m 27u-U,)]- du+(14)

0f

Integration yields the velocity distributionI C!(1 I Cf mZ' 'E I + mz (~Z' )('+ T /( 1T Reb)= r
1 , lU1 fK F2 i s _____-

- (l- m exp ' ' i- -I m*~ (l-T) mmsi KC m [ + mz 41-mZ 4
- m2 (1)

MJl mzexK(Kin-
-I +I -- f mZ (15),

K- z

and the skin friction law (U = 1, y/b = 1)

ICf 2)/Cf 2 1 -1
l - -T m E -Reb 111+m- exp - tan m

- 1+ !-,1" m (16K 2 C M

for compressible flow.

8



Eqn. 16 can be approximated in similar fashion as Eqn. 11 and

written

1 C1~ + -m c
/2 1 m Jln(XCf K m In E VT Reb) (16a)Cf ~ ~ ~ 4 -+ 2 a:lm lm

-1

Note that, as m - 0, (tan m/m) - 1, and Eqns. 15 and 16 reduce to the

incompressible form of Eqns. 11 and 12 respectively.

Fig. 4 shows the compressible turbulent plane Couette flow skin

friction law given by Eqn. 16a: as well as the laminar one obtained assuming

a linear viscosity-temperature relationship, and Pr = 3/4, for equal wall

temperature and heats rates

(Cf /eb)am =1 PrMc2

Note that, contrary to the turbulent case, the laminar skin friction
increases with Mach number due to increasing wall cooling.

Also shown in Fig. 4 is the heat transfer coefficient Ch whose

definition is

qw
h Pw Uc (hw - hb)

where hb is the midpoint enthalpy. From Eqn. 7 -- hb = hw + uc / 2 -- and

Eqn. 3, it follows that Ch = Cf. Alternately, the heat transfer rate-to the

walls may be calculated directly from Eqn. 3.

qr -qw = 1fpWuC (17)

The ratio of compressible to incompressible skin friction coefficients

for various Reynolds numbers is shown in Fig. 5.

Typical turbulent velocity profiles, given by Eqn. 15, are shown in
Figs. 6 and 7 for various Mach numbers ahd Reynolds numbers. The

density and enthalpy profiles, obtained from Eqns. 9 and 15, are shown in

Figs. 8 and 9.

9



The very small variation of density across most of the profiles, as

shown in Fig. 8, suggests that the simplifying approximation of assuming

constant density at the midpoint value, Pb' in the integration of -Eqn. 6 might

be useful.

Thus, with (Pb/Pw) = (1 + mz) - from Eqn. 9, Eqn. 6 yields

essentially the incompressible velocity profile modified for compressibility

u _ 1 In 1 + _lm_ (18a)
Uc K 2 2

and an approximate skin friction law

2£ -- Km l (E m (18b)

The velocity profiles given by Eqn. 18a are somewhat fuller than

those given by Eqn. 15, with increasing departure at higher Mach numbers.
As for the skin friction law, Cf, given by Eqn. 18b, is lower than that of

Eqn. 16a-by about 57 at Mc = 1, 15% at Mc = 2, and increases to about 40%

at Mc 8for 103  Re b = 106

Example:

Consider a slipper bearing riding along a rail at supersonic speed

with a small air gap between the slipper and rail surfaces -so that, in

cross section, the flow may be considered two dimensional in the fist

approximation. Assume that at some distance behind the leading edge of

the slipper, the flow in the gap becomes fully viscous and Couette flow

develops. A sketch of the longitudinal cross section is shown in Fig. 10

indicating the approximate bow shock of the slipper.

For purposes of illustration it is assumed that the air entering the.

gaptraverses a normal shock portion of the bow shock, and the pressure

in the gap is constant and corresponds to that behind a normal shock.

10



H

Assumeu = 4500 f.p.s. so thatu= u /2 2250 f.p.s., and

the -gap height is 1 / 8" so that b = 1/ 16". Taking, atmospheric temperature

as70"F, TcO = 530"R; the speed of sound, a= 4yRT, 1 128f. p.s., so

= 4.0 andM c = 2.

From the normal shock relation for y = 1. 4

28M -IPgap - -1
p , 6

Here, assuming atmospheric wall temperature for slipper and rail --

Tw = To = 530R -- the wall density is

Pap Pa ( c s- 0430
Pw = RT - RTo \ 6 0 ft 3

The Reynolds number based on b is

Reb - PWc 1. 38xi0 6

so that the Couette flow can be expected to be turbulent.

For Mc = 2 and Reb = 1. 38x10 6 , the turbulent skin friction

coefficient, as given by Fig. 4, is

Cf = .0014

The wall heat transfer rate, from Eqn. 17, is then

:1 1qw : ' P

Btu: 4 5 0 t r e -

This heat rate is comparable to-those experienced at the stagnation point of

some bodies during reentry. For example, the stagnation heat rates to a

Mercury capsule are approximately 230 Btu/ft2 sec.

11
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SHOCK

I Fig. 10. Sketch of Slipper in .Proximity to Rail
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